Aspen Plus V11 Masterclass : From beginner to advanced user
Steady-State Chemical Engineering Simulation & Process Modeling using Aspen Plus V11
4.55 (1290 reviews)

6,440
students
13 hours
content
Jan 2025
last update
$74.99
regular price
What you will learn
Identify the benefits of process simulation using Aspen Plus
Describe the capabilities of Aspen Plus
Familiarize yourself with Aspen Plus graphical user interface and organizational structure
Learn the basic concepts necessary for creating simulations in Aspen Plus
Enter necessary elements to fully define a Fluid Package
Select the appropriate property method for your application
Define material streams and connect unit operations to build a flowsheet
Modify and set desired units of measure
Review stream analysis options
Add and connect unit operations to build a flowsheet
Use the Report Manager to create custom unit operation and stream reports
Use Aspen Plus to perform property analysis of pure components and mixtures
Use Aspen Plus in thermodynamics instruction for Vapor-Liquid, Liquid-Liquid and Vapor-Liquid-Liquid Equilibrium calculations
Build, navigate and optimize steady state simulation models using Aspen Plus
Utilize a wide variety of unit operation models and calculation tools to model process equipment
Evaluate the performance of existing equipment by leveraging the equipment rating capabilities of Aspen Plus
Perform Case Studies to determine the optimum operating points for a process
Design, revamp and debottleneck process equipment
Use the Model Analysis Tools to run sensitivity analysis and optimize your process
Calculate process performance and thermophysical data with user subroutines in Fortran
Investigate reasons why a simulation may produce poor results or errors
Use suggested tips to debug a variety of simulations
Understand best practices and learn how to troubleshoot simulations
Identify and explain the various classes of distillation and separations models available in Aspen Plus
Gain the skills and knowledge to model distillation, separation and extraction processes
Reduce process design time by using advanced features of RadFrac distillation columns
Use column analysis tools to optimize the feed location and number of stages and improve energy utilization for distillation columns
Add and manipulate column specifications to meet process objectives
Construct, run, manipulate and analyze a distillation column
Specify required parameters in order to execute flash calculations and fully define material streams
Identify and explain the various classes of reactor models available in Aspen Plus (PFR, CSTR…)
Model Plug Flow, Continuous Stirred Tank and Fluidized Bed Reactors
Enter reaction stoichiometry and kinetic data for simple (POWERLAW) and complex (LHHW) reaction types
Use the Model Analysis Tools to run sensitivity analysis and optimize the operating conditions of a chemical reactor
Use the Model Analysis Tools to run sensitivity analysis and optimize the selectivity of a given chemical reaction
Identify and explain the various classes of piping system models available in Aspen Plus (pipes, valves, pumps, compressors)
Model piping components (pipes, fittings, valves...)
Model fluid movers (pumps, compressors)
Model piping systems
Mitigate the risk for cavitation or choked flow using Aspen Plus
Learn how to economically optimize your piping system
Compare and contrast the applicability and operation of different heat exchanger models available in Aspen Plus
Learn the fundamentals of producing an optimized shell & tube heat exchanger design
Implement Aspen Exchanger Design & Rating (EDR) for rigorous heat exchanger calculations within Aspen Plus
Use the Activated Exchanger Analysis feature for continuous heat exchanger study and design
Design and rate a shell and tube heat exchanger using the EDR interface inside Aspen Plus
Identify and explain the various classes of solids and solids separator models available in Aspen Plus
Gain the practical skills and knowledge to begin modeling new and existing solids processes (crushers, fluidized beds, dryers, crystallizers…)
Learn practical techniques for building and troubleshooting solids models
Related Topics
3443000
udemy ID
8/23/2020
course created date
5/19/2021
course indexed date
Bot
course submited by